Hydrogen production in DBD reactor powered with nanosecond high voltage pulses

Mirosław Dors, Tomasz Izdebski and Jerzy Mizeraczyk

Balatonalmádi, 25-29 August 2013

Nanosecond voltage pulses much more efficient in H₂ production than AC

\square H₂O inhibits H₂ production

5th CESPC, Balatonalmádi, 25-29 August 2013

GC-TCD, FTIR

- Quartz glass tube: inner diameter 15 mm
- RVC (Reticulated Vitreous Carbon) electrode:
 - outer diameter 8 mm,
 - inner diameter 3 mm,
 - length 150 mm,
 - low porosity 80 ppi (pores per inch),
- Gas composition and flow rate:
 - $CH_4:CO_2:H_2S = 69\%:30\%:1\%$
 - 200 cm³/min.

- Power supply:
 - Pulse generator NPG-15/2000 by Megaimpulse Ltd.
 - -29 kV, 50 Hz 3 kHz

DBD reactors RVC electrode and porous ceramic tube

- Quartz glass tube: inner diameter 15 mm
- RVC (Reticulated Vitreous Carbon) electrode in porous ceramic tube:
 - outer diameter 12 mm,
 - inner diameter 8 mm,
 - length 150 mm
- Gas composition and flow rate:
 - $CH_4:CO_2:H_2S = 69\%:30\%:1\%$
 - 200 cm³/min.

- Power supply:
 - Pulse generator NPG-15/2000 by Megaimpulse Ltd.
 - -29 kV, 50 Hz 3 kHz

DBD reactors RVC electrode and porous ceramic tube and Ni

- Quartz glass tube: inner diameter 15 mm
- RVC (Reticulated Vitreous Carbon) electrode in porous ceramic tube:
 - outer diameter 12 mm,
 - inner diameter 8 mm,
 - length 150 mm,
 - saturated with Ni
- Gas composition and flow rate:
 - CH₄:CO₂:H₂S = 69%:30%:1%
 - 200 cm³/min.

- Power supply:
 - Pulse generator NPG-15/2000 by Megaimpulse Ltd.
 - -29 kV, 50 Hz 3 kHz

GC-TCD, FTIR

- Quartz glass tube: inner diameter 15 mm
- RVC electrode and glass beads Ø3 mm:
- Gas composition and flow rate:
 - CH₄:CO₂ = 70%:30%
 - 200 cm³/min.

- Power supply:
 - Pulse generator NPG-15/2000 by Megaimpulse Ltd.
 - -29 kV, 50 Hz 3 kHz

Results H₂ and CO production

Results H₂ and CO production

Thermodynamic Equilibrium Reactor, no ions, no electrons

Close to thermodynamic equilibrium

Results H_2 and CO production – H_2 S influence

Results H_2 and CO production – H_2 S influence

Results H_2 and CO production – H_2 S influence

Results C2 and C3 by-products

Ni catalyst activated due to heating the ceramic barrier

- Ni catalyst activated due to heating the ceramic barrier
- □ H₂S increases C₂H₂ formation

15

- Ni catalyst activated due to heating the ceramic barrier
- □ H₂S increases C₂H₂ formation

- Ni catalyst activated due to heating the ceramic barrier
- H₂S increases C₂H₂ formation
- \Box H₂S (or sulfur) poisons the Ni catalyst

Results C2 and C3 by-products

Results CH₄ conversion and selectivity

Results H₂S

 $H_2S = H_2 + S$

5th CESPC, Balatonalmádi, 25-29 August 2013

Results

Results OES – influence of H_2S

Results Packed bed DBD reactor

Reactor with RVC and glass beads = Reactor with RVC only

Reactor with RVC and glass beads \approx Reactor with RVC only

Conclusions

- Influence of reactor geometry:
 - higher H₂ production in the DBD with RVC only due to the higher discharge energy,
 - different by-products profile:
 - \circ C2 hydrocarbons \checkmark when discharge energy 7,
 - \circ C3 hydrocarbons **7** when discharge energy **7**,
- Influence of Ni catalyst:
 - activated at higher pulse repetition rate,
 - decreases C₂H₂ production,
- $\Box \quad Influence of H_2S:$
 - is converted into soil sulfur directly and via CS₂,
 - changes discharge parameters due to deposited sulfur,
 - decreases CH₄ conversion and H₂ production,
 - poisons Ni catalyst (no activation observed).

Thank you for your attention!